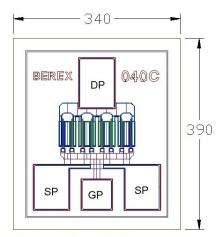


BCP040C

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 400μm)


The BeRex BCP040C is a GaAs Power pHEMT with a nominal 0.25-micron by 400-micron gate making this product ideally suited for applications where high-gain and medium power in the DC to 26.5 GHz frequency range are required. The product may be used in either wideband (6-18 GHz) or narrow-band applications. The BCP040C is produced using state of the art metallization with SI_3N_4 passivation and is screened to assure reliability.

PRODUCT FEATURES

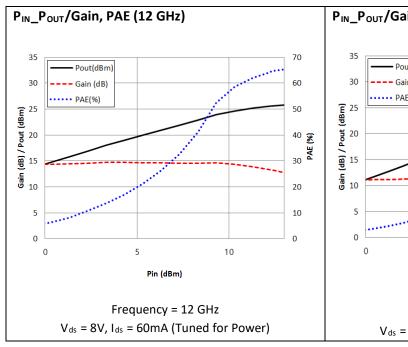
- 25.5 dBm Typical Output Power
- 13.5 dB Typical Gain @ 12 GHz
- 0.25 X 400 Micron Recessed Gate

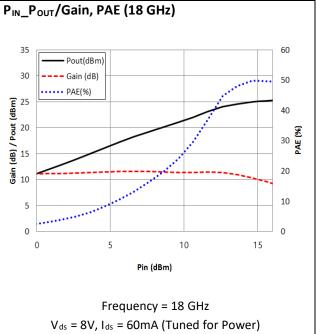
APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions: 340 X 390 microns Gate pad(GP): 60 X 60 microns Drain pad(DP): 70 X 100 microns Source pad(SP): 70 X 95 microns Chip thickness: 75 microns

ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) Ta = 25° C

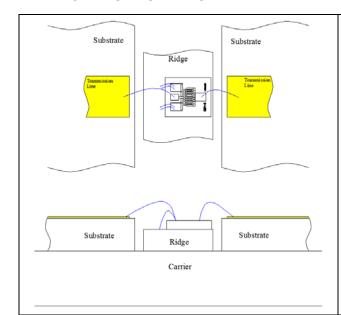

	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 60mA$)	12 GHZ	24.0	25.5		dBm
- 105	Cusput Cities C 1 las (1 as C1) las Commity	18 GHz	23.5	25.0		
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _d = 60mA)	12 GHZ	12.0	13.5		dB
Glas		18 GHz	8.5	10		
DAE	PAE @ P _{1dB} (V _{ds} = 8V, I _d = 60mA)	12 GHZ		60		%
PAE		18 GHz		50		
NF	Noise figure (Vds = 2V, I _d = 20 mA)	12 GHz		1.05		dB
l _{dss}	Saturated Drain Current (V _{gs} = 0V, V _{ds} = 2.0V)	70	110	150	mA	
Gm	Transconductance (V _{ds} = 2V, I _d = 60mA)		155		mS	
Vp	Pinch-off Voltage (I _{ds} = 0.4mA, V _{ds} = 2V)	-2.5	-1.2		V	
BV _{gd}	Drain Breakdown Voltage (Ig = -0.4mA, source		-15	-12	V	
BV _{gs}	Source Breakdown Voltage (I _g = -0.4mA, drain		-13		V	
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		104		°C/W	


<u>m</u> BeRex, Inc. 3350 Scott Blvd. #6101 Santa Clara 95054 tel. (408) 452-5595

MAXIMUM RATING $(T_a = 25^{\circ} C)$

PARAMETERS		ABSOLUTE	CONTINUOUS	
V_{ds}	Drain-Source Voltage	12V	8 V	
V_{gs}	Gate-Source Voltage	-6V	-3 V	
Id	Drain Current	l _{dss}	l _{dss}	
I_{gsf}	Forward Gate Current	20 mA	4 mA	
P_{in}	Input Power	21 dBm	@ 3 dB compression	
T_ch	Channel Temperature	175°C	150°C	
T_{stg}	Storage Temperature	-60°C – 150°C	-60°C – 150°C	
Pt	Total Power Dissipation	1.4 W	1.2 W	

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.



S-PARAMETERS (V_{ds} = 8V, I_{ds} = 60mA)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1.0	0.96	-32.77	9.22	157.08	0.019	74.39	0.75	-10.91
2.0	0.91	-62.35	8.30	137.43	0.033	58.12	0.70	-20.57
3.0	0.85	-89.11	7.32	120.10	0.044	46.81	0.65	-28.37
4.0	0.80	-113.74	6.38	105.13	0.050	37.96	0.60	-33.06
5.0	0.77	-135.76	5.56	91.69	0.054	29.52	0.56	-37.20
6.0	0.75	-155.44	4.86	79.41	0.056	23.50	0.52	-41.51
7.0	0.75	-173.01	4.28	68.68	0.056	18.04	0.49	-45.00
8.0	0.76	172.05	3.76	58.61	0.055	15.33	0.47	-47.88
9.0	0.77	158.74	3.32	48.98	0.051	10.95	0.46	-52.71
10.0	0.79	147.46	2.94	40.38	0.050	8.65	0.44	-56.78
11.0	0.81	138.51	2.61	32.53	0.049	8.67	0.42	-62.62
12.0	0.83	130.46	2.34	24.50	0.047	8.83	0.40	-68.79
13.0	0.85	123.26	2.12	17.44	0.045	4.84	0.39	-75.41
14.0	0.86	117.71	1.91	10.71	0.047	8.38	0.37	-83.12
15.0	0.88	111.89	1.73	3.69	0.047	6.82	0.36	-91.10
16.0	0.89	107.81	1.57	-2.51	0.048	5.16	0.36	-100.53
17.0	0.91	104.38	1.45	-8.61	0.050	5.99	0.36	-112.60
18.0	0.91	99.79	1.33	-15.34	0.050	5.85	0.37	-122.80
19.0	0.91	97.32	1.19	-21.75	0.053	5.47	0.39	-133.49
20.0	0.92	94.84	1.09	-27.79	0.052	3.02	0.42	-145.15
21.0	0.92	93.48	0.98	-33.30	0.055	3.69	0.45	-154.23
22.0	0.91	92.03	0.90	-38.62	0.055	3.83	0.49	-162.65
23.0	0.90	90.59	0.81	-44.51	0.058	2.69	0.53	-171.11
24.0	0.90	89.92	0.73	-49.47	0.061	0.24	0.56	-178.63
25.0	0.90	89.62	0.66	-53.64	0.057	-0.17	0.59	174.88
26.0	0.93	87.29	0.59	-58.58	0.062	6.04	0.62	168.70

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Using 1 mil. diameter, Au bonding wires.

- 1. Gate to input transmission line
 - Length and Height: 600 μm x 250 μm
 - Number of wire(s): 1
- 2. Drain to output transmission line
 - Length and Height: 400 μm x 250 μm
 - Number of wire(s): 1
- 3. Source to ground plate
 - Length and Height: 250 μm x 300 μm
 - Number of wire(s): 4

Proper ESD procedures should be followed when handling this device.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.